Total Burner Solutions for Energy and Carbon Reduction

Thermal manufacturing process managers must continue to improve efficiency, achieve higher productivity, reduce emissions and overall energy use and keep equipment running as long as possible.


Saint-Gobain Performance Ceramics & Refractories collaborates with customers and partners to continually innovate and engineer products to meet customer needs around ongoing improvement and efficiency.


Single ended radiant tubes, U-tube and W-tubes each utilize enhanced design solutions and carefully selected materials to ensure performance and efficiency. Silit® ceramic radiant tubes, recuperators, flame tubes, and combustors are all established, proven and time-tested designs.


Saint-Gobain Performance Ceramics & Refractories’ total burner solutions utilize additive manufactured advanced silicon carbide (Amasic-3D®) combined with twisted channel HeatCor™, twisted tape SpyroCor®, PyroCor™, and NOxBuster™ technology to achieve best-in-class thermal and emissions performance.

Solution By Radiant Tubes

Click on your radiant tube to find more:

Single Ended Radiant Tube

Saint-Gobain Performance Ceramics & Refractories’ extensive range of total burner solutions for industrial heating applications.

The single ended radiant tube’s straight tube-in-tube design is comprised of thin-wall ceramic and alloy material with integral self-recuperating capabilities.

Its compact design is optimized for heat transfer and heat output with minimal losses.

The use of Saint-Gobain Performance Ceramics & Refractories‘ Silit® materials ensures that ceramic radiant tubes, recuperators, flame tubes and combustors deliver reliable, time-tested performance in line with industry standards.

Employing the ceramic radiant tube in conjunction with the twisted channel HeatCor™ recuperator, twisted tape PyroCor™ flame tubes, and 3D printed burner tips can lead to efficiencies of up to 85%, twice the heat release of traditional metallic tubes, optimum temperature uniformities and minimum NOx.

Heat Release
to 80%

Features and Benefits

  • Made of robust silicon carbide
  • Operating temperatures up to 1,350°C
  • Long service life
  • Advanced silicon carbide microstructures provide high thermal conductivity and shock resistance
  • Traditional (Silit®) and additive manufactured (Amasic-3D®) designs can accommodate a range of cost and performance targets
  • Thin-wall designs increase thermal performance and enable design flexibility


Brochures & Flyers
Total Burner Solutions - Brochure

Our engineered ceramic products are custom designed, co-developed and manufactured for industrial heating applications: single ended radiant tube (sert)

PDF | 886.9 KB
Case Studies
Spyrocor W-TUBE Galvanizing & Annealing - Case Study

W-type radiant tube in vertical orientation with plug-type recuperator

PDF | 3.1 MB
Spyrocor Radiant Tube Inserts - Article

Reduce emissions, increase thermal efficiency, save money.

PDF | 61.64 MB


How does PyroCor™ work?

PyroCor™ utilizes a specialized design and variable twists to optimize temperature uniformity in the radiant tube.

What are the material properties of Silit® and Amasic-3D®?

These infiltrated SiSiC high performance, non-porous ceramic materials can accommodate application temperatures of 1,380°C. They also offer excellent thermal strength properties.

What are the maximum dimensions for ceramic radiant tubes?

The maximum dimensions are 300 mm in diameter and 3,500 mm in length. Radiant tubes can be customized to accommodate customer-specific mounting requirements.

What is different between HeatCor™ and a standard recuperator?

The HeatCor™ technology’s use of hollow channels and the resultant larger inner surface area results in an increase of up to 80% efficiency versus a standard ceramic recuperator.

What is the difference between ceramic and metal radiant tubes?

Ceramic radiant tubes made from Silit® provide twice the heat transfer rate (50 kW/m2 – 1,050°C) of a standard metallic radiant tube. Ceramic radiant tubes do not require bending, meaning their service life is longer versus a metallic tube.

What is the maximum application temperature for Silit® ceramic radiant tubes?

The maximum application temperature is 1,380°C.

What is the minimum wall thickness possible with Silit® and Amasic-3D®?

The thinnest possible wall thickness is approximately 4 mm with Silit® and 2 mm with Amasic-3D®.